Endomorphism Rings of Modules over Prime Rings

نویسندگان

  • Mohammad Baziar
  • Christian Lomp
چکیده

Endomorphism rings of modules appear as the center of a ring, as the fix ring of a ring with group action or as the subring of constants of a derivation. This note discusses the question whether certain ∗-prime modules have a prime endomorphism ring. Several conditions are presented that guarantee the primeness of the endomorphism ring. The contours of a possible example of a ∗-prime module whose endomorphism ring is not prime are traced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

Serial Rings

A module is called uniseriat if it has a unique composition series of finite length. A ring (always with 1) is called serial if its right and left free modules are direct sums of uniserial modules. Nakayama, who called these rings generalized uniserial rings, proved [21, Theorem 171 that every finitely generated module over a serial ring is a direct sum of uniserial modules. In section one we g...

متن کامل

Essentially Retractable Modules

We call a module  essentially retractable if HomR for all essential submodules N of M. For a right FBN ring R, it is shown that: (i)  A non-zero module  is retractable (in the sense that HomR for all non-zero ) if and only if certain factor modules of M are essentially retractable nonsingular modules over R modulo their annihilators. (ii)  A non-zero module  is essentially retractable if and on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014